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The optical frequency comb based on microresonators (microcombs) is an integrated coherent light source and has the
potential to promise a high-precision frequency standard; self-reference and a long-term stable microcomb are the keys to
this realization. Here, we demonstrated a 0.7-octave spectrum Kerr comb via dispersion engineering in a thin-film lithium
niobate microresonator, and the single-soliton state can be accessed passively with long-term stability over 3 h. With such a
robust broadband coherent comb source using thin-film lithium niobate, a fully stabilized microcomb can be expected for
massive practical applications.
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1. Introduction

As a highly coherent light source, the optical frequency comb
generated on the microresonator (so-called microcomb) has
many applications, thanks to its high integrity, low power con-
sumption, and low phase noise[1,2]. Especially, octave-spanning
microcombs via dispersion engineering can realize a chip-scale
2f-3f or f-2f[3,4] self-referencing scheme. This makes it a poten-
tial new frequency standard because of its high precision[5,6]. In
practice, the stability of the soliton comb source is the basis of
subsequent signal processing. However, achieving a long-term
stable soliton comb can be challenging due to thermal effects
or center frequency jitter induced by the pump. This often
requires a complex feedback system, which hinders the minimi-
zation of the device[7–10].
In recent years, thin-film lithium niobate (LN) photonic devi-

ces have been greatly developed and studied because of their
broadband low-loss optical transparent window, excellent quad-
ratic nonlinear effect, and high electro-optic efficiency[11–20]. In
particular, the optical intensity-dependent photorefractive effect
of LN[21,22] is just opposite to the thermo-optic nonlinear effect,
so it enables a new mechanism for effectively generating soliton
optical frequency combs based on an LN microresonator
with self-starting property[23,24]. Furthermore, such a feature

is potentially beneficial for long-term passive stability of the sol-
iton comb, which is of significance for practical applications.
In this Letter, we report soliton microcombs generated in

z-cut LN-on-insulator (LNOI) thin-film microring resonators
(MRRs), and different states of soliton microcomb generation
are observed. Moreover, the balance of photorefractive and
thermo-optical effects of LN facilitates the generation of pas-
sively stable single-soliton for more than 3 h without feedback
control. Finally, a wideband Kerr comb is generated in the MRR
with a smaller size based on dispersion engineering. We demon-
strate the potential of high-performance LN microresonators as
integrated, highly robust, and broadband coherent laser sources
on a chip.

2. Designs and Fabrications

The high-Q LNOI resonators are fabricated by a standard e-
beam lithography process. We initially use the electron beam
to pattern the device on photoresist, and then the waveguide
is fabricated by an Ar-ion milling process. Figures 1(a) and 1(b)
show an optical image of theMRR device and the cross section of
the waveguide. The LN thin film (0.62 μm thickness) is partially
etched down by 0.32 μm, and the sidewall angle (θ) is estimated
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to be about 70°. The entire device is air-clad. We prepare the
LN MRRs with different radii of 100 and 60 μm, corresponding
to the free spectral ranges (FSRs) of 200 and 333 GHz, respec-
tively. We obtain anomalous dispersion in a wide spectral band
by optimizing the geometry of the waveguide[25]. We used the
single-layer inversed taper as the end-coupling structure with
an estimated coupling efficiency of 13%. We simulate the Dint

curve [Fig. 1(c), left, blue] of the MRR with a radius of
100 μm, and the zero Dint matching points are around 135
and 270 THz, identified as the position of the dispersive wave
(DW). The inset is a zoom-in view of the black dashed box.
We measure the resonant frequencies in transmission curve
of the microresonator by scanning the laser frequency[23,24]

and extract the waveguide dispersion at 1550 nm band by fitting
the Dint curves.

3. Experiments and Discussions

The schematic of the experimental setup is shown in Fig. 2(a).
The continuous-wave laser is amplified by an erbium-doped
fiber amplifier and coupled into the cavity through lens fiber
as the pump light.We first measure theMRR transmission spec-
trum in the telecom band. The pump polarization is adjusted to
match the TE cavity mode by the polarization controller (PC).
The output optical signal is detected by a photodetector and fol-
lowed by an oscilloscope to record the cavitymode transmission.
The result is shown in Fig. 2(b). Figure 2(c) is the zoom-in view
of the selected cavity mode, and the Lorentzian fitting (red
curve) indicates an extracted QL of over one million. As the
power increases, we observe the appearance of soliton steps

when the scanning pump light frequency decreases, as shown
in Fig. 2(d). The output microcomb spectrum is measured by
an optical spectrum analyzer [Fig. 2(a)]. Furthermore, we use
the grating filter to suppress the pump mode. The extracted
comb power is characterized by an electrical spectrum analyzer
and optical power meter.
Different soliton comb states can be achieved by manually

changing the pump frequency with the spectra shown in
Figs. 3(a)–3(h). Figure 3(d) shows a single-soliton comb with
a repetition rate of 200 GHz, and the spectral envelope is fitted
by the sech2 function (red). However, we notice that the mea-
sured comb spectra feature no dispersive wave, which is perhaps
caused by insufficient on-chip power (∼260mW). In addition,
we also observe the two-soliton-state combs [Figs. 3(e) and 3(f)].
Moreover, the low-frequency RF signal of generated combs in
each state is measured to confirm the low-noise soliton state[24].
Figures 3(i) and 3(j) show the change of comb power during

the generation of a long-term single-soliton comb.We first man-
ually tune the off-resonance pumped laser [Fig. 3(i), I region]
frequency increase continuously until it excites the four-wave
mixing process [Fig. 3(i), II region]. After the appearance of
the soliton state, we decrease the pumped laser frequency and
keep the frequency constant once reaching the single-soliton
state [Fig. 3(i), III region].

Fig. 1. (a) Optical image of the LNOI microring resonator; inset, zoom-in of the
coupling region; (b) cross-sectional schematic of the LN waveguide, with W
(width) of 1.6 μm, E (etch depth) of 0.32 μm, and T (thickness) of 0.62 μm;
(c) simulated LN waveguide integrated dispersion Dint/(2π) (blue); inset, local
zoom-in within the black dashed box with the experimentally extracted data
points (orange circles).

Fig. 2. (a) Schematic of experimental testing setups, including CW (continu-
ous wave) source, EDFA (erbium-doped fiber amplifier), PC (polarization con-
troller), PD (photodetector), OSC (oscilloscope), OSA (optical spectrum
analyzer), ESA (electrical spectrum analyzer), GF (grating filter), and OPM (opti-
cal power meter); (b) MRR transmission spectrum in a slightly undercoupled
state; (c) laser cavity detuning of the pump resonance mode (blue dot) with
fitting Lorentz curve (red); (d) resonator transmission at a high-power pump
when the laser frequency decreased.
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The long-term stability of the microcomb is a key parameter
for practical applications. Figure 3(j) shows the optical power of
a single-soliton state as a function of time. The single-soliton
state can be preserved for over 3 h, showing excellent passive
stability. In the process of microcomb generation in the LN
microresonator, the thermal effect detunes the cavity mode
toward the red region, while the photorefractive effect of
LN detunes it toward the blue region[21,22]. Therefore, the photo-
refractive effect can compensate for the thermal effect of the
microresonator and facilitate a stable soliton microcomb
state[22,23].
The comb span is limited by the on-chip power in the

200 GHz MRRs, and we use 333 GHz MRRs for the broadband
comb generation. With similar on-chip power, the circulating
pump power is higher due to the higher finesse at the same
Q. Figure 4(a) is the simulated Dint curve in this case of geomet-
ric parameters; the designed DWs are located at 1315 nm and
2120 nm. At the pump power of ∼220mW, we observe the
broadband microcomb generation [Fig. 4(b)]. The DWs gener-
ated by the Cherenkov radiation are located at 1250 and
2010 nm, respectively, and the range of the comb line is from
1230 to 2100 nm (∼0.7-octave). We find that the measured posi-
tions of DWs deviated from the simulation and a blueshift
occurred. Because LN is highly Raman-active, the existence of
Raman scattering will eventually produce a Raman–Kerr optical
frequency comb in soliton, forming a dynamic process[24]. It
changes the condition for zero Dint point and causes the DWs

of the spectrum to be blueshifted. The broadband Kerr optical
frequency comb via dispersion engineering can be further
exploited such as 2f-3f reference technology research. For the
200 GHz MRRs, it is expected that the double-layer taper struc-
ture could provide sufficient on-chip power to realize the gen-
eration of an octave soliton comb, which can be used for an
integrated all-optical self-reference locking scheme.

4. Conclusions

In conclusion, we have demonstrated soliton microcombs gen-
erated on the LN platform based on the photorefractive effect.
We fabricate a highQ z-cut LNMRRby using a standard e-beam
lithography process. In the experiment, a simple single-layer
taper is used for end coupling, with a measured coupling effi-
ciency of 13%. We test the stability of the single-soliton state
in the pure free-running setup, and the results show that the
single soliton state can be passively stabilized for over 3 h.
Furthermore, the 0.7-octave spanning Kerr comb is observed
with high stability, which can be expected to be used in 2f-3f
self-referencing technology. In addition, the rich optical proper-
ties of LNOI make it possible for fully integrated self-referenced
optical frequency comb realization. For example, the excellent
electro-optic coefficient of LN can be used to generate a micro-
comb with high-speed modulation capability, providing extra
freedoms for dynamic control and active feedback for integrated
microcomb sources. Such properties can be further applied to
large-scale optical communication, microwave photonic tech-
nology, and other fields.
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soliton comb was featured with a sech2 fitting curve [(c), red dotted line].
Furthermore, the intensity noise of the all frequency combs was characterized
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stable generation of the single soliton for the long term is realized by photo-
refractive and thermo-optical effects [(i) and (j)].

Fig. 4. Spectral characteristics of the LN microresonator (radius 60 μm) as
well as simulation; the black dashed line marks the position of the dispersive
wave in experimental results. (a) Simulated Dint curves; (b) normalized optical
spectrum of the wideband Kerr comb.
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